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A novel thin line detection algorithm for use in low-altitude

aerial vehicles is presented. This algorithm is able to detect thin

obstacles such as cables, power lines, and wires. The system is

intended to be used during urban search and rescue operations,

capable of dealing with low-quality images, robust to image

clutter, bad weather, and sensor artifacts. The detection process

uses motion estimation at the pixel level, combined with edge

detection, followed by a windowed Hough transform. The

evidence of lines is tracked over time in the resulting parameter
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a multi-site dataset with 86 videos with 10160 wires spanning in

5576 frames.
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I. INTRODUCTION

The United States Army reports that they have lost
more helicopters to power lines than against enemies
in combat [1]; most importantly, collisions usually
occur in daylight. Helicopters and small aircraft pilots
flying at low altitude fail to identify thin objects such
as cables, power lines, and wires because they are not
easy to perceive over heavily cluttered backgrounds,
or when the contrast between the object and the
background is low. This work focuses on low-altitude
flight in urban search and rescue (USAR) missions,
for which often there are no constrained or controlled
conditions of weather, lighting effects, sensor noise,
and scene complexity.
The thin line detection algorithm and the results

presented are novel. The algorithm introduces a
tracking model for thin lines that uses the parameter
space output of a windowed Hough transform to
track line motion through time. This is the first work
that uses a large and challenging multi-site dataset,
or has dealt with thin objects in heavily cluttered
videos in urban settings, or has tried to use a visual
complexity cue as a measure to dynamically train and
select parameters used in automatic object detection.
The high level of difficulty of the dataset (see Fig. 1)
was chosen in order to use data that correspond to
representative examples of different urban scenarios,
which is especially important in the military combat
and USAR domain.
In recent years, significant effort has been

extended towards the development of visual
navigation systems for autonomous aircraft and micro
air vehicles [2—5]. Small aircraft have significant
limitations in payload and electrical power that can
be supported, which impose severe restrictions on
the hardware that can be used on-board. Computer
vision has been an effective and popular tool due
to the low size, weight, and power consumption of
small vision-based sensors. The reader is referred to
[6] for an overview of the challenges faced in visual
navigation of small autonomous aircraft in urban
environments. Algorithms for airborne automatic
object detection using computer vision techniques
are abundant. In broad terms, there are spatial-based
and temporal-based methods for automatic object
detection. Among the most common spatial techniques
are Gabor filters [7], and morphological filtering
[8]. Among the temporal-based there are dynamic
programming [9—11], and maximum likelihood
[12]. In general, previous work in automatic object
detection has focused in detection of thick targets. In
this paper the focus is automatic target detection of
thin objects, which potentially represent harder objects
to discern by human pilots, or to detect by automated
systems. Kasturi, et al. [13] used a line detection
algorithm combined with a Hough transform to detect
wires in the path of low-altitude rotorcraft vehicles
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Fig. 1. Challenging sample frames from dataset.

with subpixel accuracy in still images. Single-frame
image processing and traditional Hough transform
are shown in this paper to be unsuitable to cope with
heavily cluttered urban scenes. In this work, temporal
information is exploited through the use of motion
estimation and object tracking. Motion estimation,
using optic flow, has been used as the backbone
of autonomous helicopter navigation systems for
urban environments [14]. Also, temporal tracking of
objects is performed in a multi-window Hough space.
Hills, et al. [15] demonstrates tracking of rectangular
structures in video, using the parameter space created
by a Hough Transform. Tracking the peak of the
parameter space takes advantage of the Hough
transform’s robustness against feature occlusion and
illumination changes.
The focus of this work, in terms of the data

domain, is on urban scenery using low-quality
video. In general, published algorithms work well
when the background is fairly simple, or uniform.
However, in USAR missions, reliable methods
should be insensitive to data uncertainty due to
sensor artifacts, weather conditions, and cluttered
backgrounds. Gandhi, et al. [16] and Mau-Tsuen,
et al. [17] used cluttered backgrounds in images
from high-altitude video; nevertheless, the fact that
low-altitude flight is close to the ground places more
severe requirements on the algorithms to be used;
especially a major constrain is to deal with urban
settings, where buildings, trees, power lines, and thin
wires are common objects in the flight path of the
aircraft.
Vision technology is not designed to be a

replacement of radar and other sensors typically used
in object detection for aircraft navigation, but as an
additional mean to improve the detection reliability
under stressed conditions. Among the sensor-based
wire detection strategies are infrared technology
and laser systems [18]. High-resolution infrared
cameras have been used [19] as image sensor systems
to aid pilots, but often the target-to-background
contrast is not enough for automatic target detection,

and results are too dependant on image processing
algorithms that could potentially cause thin lines
to disappear. Laser systems are highly sensitive to
atmospheric attenuation effects [20], limiting their
reliability to fairly good weather conditions. Due
to the size and power constraints of small aerial
vehicles, nonvision-based sensor technology is
currently not viable as a standalone system. Recent
years have shown that adapting micro-technology,
such as miniature radars [21, 22], although limited,
opens new and promising possibilities for the future
of USAR aircraft navigation. It is important to
recognize that disaster areas are likely to have power
outages, smoke, and fire, which affects considerably
infrared-based techniques; consequently, even for
multi-modal systems, it is essential to have a reliable
computer vision algorithm capable of functioning
under uncertain conditions of weather and scene
complexity, and affected by sensor noise.

II. BACKGROUND

A. The Clutter Measure

In recognition or identification systems, high
visual complexity becomes an especially difficult
constraint when dealing with poorly specified targets,
i.e., not salient and not predicted by its context.
A common approach in computer vision has been
to solve problems using targets of high contrast,
unoccluded, and in typical settings. The clutter
measure proposed by Schmieder and Weathersby [23]
is sufficient to effectively characterize low-altitude
aircraft images as low or high cluttered images [24].
In this work, an adaptive algorithm based on the
clutter measure of different windows of an image
is presented. The clutter measure is used to train
the algorithm parameters. The clutter measure only
characterizes the image in terms of visual complexity
and not in terms of how difficult the image is to
process in terms of detection, i.e., an image could be
low cluttered but blurred, or have poor contrast wires
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Fig. 2. Examples of different cluttered scenes. (a) Low cluttered scene. (b) Medium cluttered scene. (c) Highly cluttered scene.

Fig. 3. Sample images used in previous work. (a) Natural background combined with synthetic wires. (b) Steger’s algorithm output.

due to weather effects or video quality (see Fig. 2).
The measure is based on the mean and standard
deviation (¹,¾) of the intensity distribution by color
at the pixel level

¹=
1
N

NX
i=1

(Xi) (1)

where ¹ is the intensity mean, Xi is the individual
pixel intensity, and N the total number of pixels to
be measured in a given window

¾ =

vuut 1
N(N ¡ 1)

NX
i=1

(Xi¡¹)2: (2)

The clutter measure of an image is given by average
of the intensity variance of contiguous windows in the
scene:

clutter(image) =

vuut 1
K

KX
i=1

¾2i (3)

where K represents the number of windows the
image was divided into and ¾ is the intensity standard
deviation described above in (2). In this work, the
window size used is 25% of the original image, i.e.,
K = 16 (refer to Section IIIE for parameter selection
details). An image is considered low cluttered if the
clutter measure is less than 30 units, otherwise it
is considered high cluttered. The threshold for low
and high clutter was chosen using the clutter mean
per video of our dataset ¹= 30. The clutter measure

per image is used as a high level description of the
dataset used, in terms of visual complexity. The clutter
measure is also used in the parameter training process.

B. Baseline Algorithm

Kasturi, et al. in [13] proposed the use of a line
detection algorithm, Steger’s algorithm [25], followed
by a Hough transform as a viable wire detection
strategy for low-altitude rotorcraft images. Kasturi’s
approach is used as the baseline comparison for
this work. The strategy was tested on synthetically
generated images combining natural backgrounds;
containing clouds and sky, with artificial wires
corrupted with noise (see Fig. 3 for a sample
grey-level image used in this work). The two kinds of
synthetic wires used are hanging bridges (parabolas)
and power lines (catenary curves). The noise appears
in the image as breaks of the wire structure. A
uniform distribution was assumed for the location
of the breaks, the number of breaks is Poisson
distributed, and the size of the breaks is Rayleigh
distributed. The main difference among datasets
is that the images used in our work contain urban
characteristics (buildings, cables, trees, etc.), which
make the detection process much more complex, due
to the many linear patterns that are formed by the
clutter and objects in the background.
Noise and clutter effects are reduced by

eliminating short lines computed by the line detection
algorithm. The Hough transform threshold for peaks
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Fig. 4. Algorithm flowchart.

in the parameter space is given by

Threshold =mean(votes)+ 1
2[max(votes)¡min(votes)]

(4)

where mean, max, and min are the mean, maximum,
and minimum vote counts in the parameter space. As
the gap between the maximum and minimum vote
count gets larger, the threshold becomes too lenient,
resulting in a large false-alarm rate. The illumination
model used to generate wires assumes ambient light
reaches the entire wire equally, from all directions,
which is true for visually simple images; thus, the test
images were overly simple compared with real data.
The performance of this strategy is summarized in
the results section, and compared against the method
proposed in this work. Steger’s implementation was
provided by the author. The problems that arise from
the artificial data and the overall limitations of the
approach, give valuable information that leads to
the development of the algorithm presented in this
paper.

III. THIN LINE DETECTION ALGORITHM

A. Algorithm Overview

The algorithm (see Fig. 4) detects thin lines by
exploiting pixel motion, morphological properties,
and linear patterns found in consecutive frames in
low-quality video. Consecutive frames are used to
estimate relative motion of individual pixels in the
scene, and then the motion information is merged
with an edge map produced by an edge detector.
The feature map used consists of the detected
edges with strength equal to their estimated motion.
Next, the feature map is preprocessed in order to
minimize the number of pixels to be further analyzed.
Morphological filtering of 8-connected components
found in the feature map is performed. The feature
map is subdivided into windows and a Hough
transform is performed in each of them. The resulting
parameter spaces are tracked over time using a line

motion model, which predicts the next location of
previously tracked thin lines even when they are not
fully visible. Section IIIE describes all the parameters
used in the algorithm.

B. Feature Detection and Preprocessing

An edge map is computed using the Canny
edge detector [26] with parameters (refer to
Section IIIE for details on the parameters summary
and training) chosen depending on the clutter measure
of the entire image. Then, preprocessing uses two
filtering techniques based on the morphology of the
8-connected components found in the edge map.
Connected components with a pixel count less than
Ts = 30 are eliminated. Also, components are filtered
based on the eccentricity of the ellipse that has the
same second-moments as the connected component.
Components with eccentricity less than Te = 0:98 are
discarded. High motion values are used to increase the
number of true line points to be fed into the Hough
transform. Motion estimation at the pixel level is given
by (5). Pixels that have motion estimation greater or
equal than the 90% of the highest estimated pixel
motion value in the image are kept.
The spatial and temporal derivatives @I=@x, @I=@y,

@I=@t of the image intensity function are used as
image motion descriptors. The derivatives represent
the normal flow at every pixel in the image, i.e., the
projection of the optic flow in the direction of the
image gradient (Ix,Iy). By definition, the normal flow
un at any pixel I(x,y) at time t is given by

un =
1q
I2x + I2y

μ
Ix
@x
@t
+ Iy

@y
@t

¶
: (5)

Motion is only considered at those pixels present
in the edge map. The normal flow is used as an
estimated relative motion value. Given that the
magnitude of the intensity gradient is large at the
edge pixels, the projection of the optic flow on the
direction of the local intensity gradient is equal to
the normal flow [27]. Using normal flow as an image
motion descriptor allows avoiding the computation of
the more computationally expensive optic flow. The
feature map is given by the combination of the edge
map and the estimated motion.

C. Line Fitting using Windowed Hough Transform

Different regions of natural images will have
significant variations in the amounts of clutter, thus
causing a large number of incidental alignments that
will correspond to strong peaks in the parameter
space, i.e., false alarms (FA). The windowed Hough
transform has been successfully used [28] to avoid
incidental edge alignment produced by noisy edges
or edges belonging to patterns not being searched
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Fig. 5. Clutter effects on traditional Hough transform. (a) Original image. (b) Feature map produced by Steger’s algorithm.
(c) Parameter space. (d) Hough transform results.

for. A traditional Hough transform would often
fail, in cluttered images, since the clutter peaks will
be much stronger than the peaks generated by the
thin obstacles (see Fig. 5). Typically, the size of the
window depends on the size of the pattern being
searched for, but we use large-sized windows in order
to search for regional trends [29] rather than local
trends. In this work the windows used are 25% of the
size of the entire image, and a Hough transform is
performed in each of them. Using a window-based
approach also reduces the effects of clutter in the
detection performance: it gives the algorithm various
opportunities to detect a line if it appears in different
windows in the image.
The local maxima, in each parameter space at

time t, represent the evidence of thin lines within
a window in that frame. In each window, our line
candidates in the parameter space are given by pairs
of the form (½,μ). The vote count threshold is learned
based on the clutter measure of the window being
processed. Due to the thickness and the catenary
shape of wires and cables, some of these thin objects
might produce multiple responses in the parameter
space. In the parameter space, thin objects are being
approximated piecewise by linear segments by using
multiple (½,μ) pairs; therefore, within a window it
would be redundant to further process those lines that
are very close in terms of ½ and μ (½ within 40 px and
μ within 40±), in which case only the line with the
highest vote count is kept. A weighted average based
on the vote count of each line was also considered,

but did not show any improvement in the algorithm’s
performance.

D. Parameter Space Tracking: the Line Motion Model

It is necessary to describe how lines are moving
within a scene, and also what their relative motion
is with respect to all other lines in the image. It is
clear that small variations of clutter and video artifacts
could affect potentially the feature map; for example,
Fig. 6(a)—(b) show a small variation of the number
of wire pixels found that leads to the still-frame
misdetection shown in Fig. 6(c)—(d); consequently,
there is an evident need to use persistence across
frames of wires that have been previously found.
It is possible to keep the cumulative sum of the

motion magnitude estimated for each feature pixel
in a line. Every time the vote count on a bin in
the parameter space is increased the mean motion
of the entire line can be recalculated. Pixel-based
motion values are highly sensitive to errors due to
clutter and sensor artifacts (see Fig. 7). In order to
minimize the effects of the clutter the motion vector
at time t ~vt = (j~vtj,®t) is estimated after a line has been
successfully tracked from a previous frame at time
t¡ 1. The motion magnitude is given by the Euclidean
distance between the output of the tracking model at
frames Zt¡1 and Zt. The direction is given by

®t = tan
¡1
μ
Zt½¡ ½t¡1
Ztμ ¡ μt¡1

¶
: (6)
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Fig. 6. Misdetection due to feature map inconsistencies in low-quality video. (a) Image frame. (b) Following frame.
(c) Detection on (a). (d) Detection on (b).

Fig. 7. Peak motion in parameter space.

Fig. 8. Parameter space line movement model.

Given a previously tracked line ~Zt¡1 we set a first
estimate x̂¡t to be the maxima within the shaded region
(shown in Fig. 8) of the circle C of center (Z(t¡1)½,

Z(t¡1)μ) and radius r. ± is the tolerance for the area to
be searched to compute the first estimate, as depicted
in Fig. 8. Next, if a maxima x̂+t , greater than x̂

¡
t , is

found in C outside the shaded region we define our
model output as

~Zt =
w¡t X̂

¡
t +w

+
t X̂

+
t

w¡t +w+t
(7)

where wt = e
votes, votes is the vote count for X̂¡t and

X̂+t . If ~vt¡1 is not available we search C fully to get ~Zt.
If no maximum is found in C, set ~Zt to be a point at
a distance r=2 from ~Zt¡1 in the direction of ~vt¡1. After
each frame is processed, for each line we update the
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model by using

rt+1 =

8<:
rt+ j~vtj if j~vtj> rt
rt¡ rt¡

j~vtj
b

otherwise
(8)

±t+1 =

8>><>>:
μ
±t
2
+Ztμ ¡®t

¶
=c if Ztμ < ®tμ

±t
2
+Ztμ +®t

¶
=c otherwise

: (9)

Assuming there is a constant rate of change of the
motion vector in the parameter space, the model
supports line movement in six degrees of freedom (up,
down, left, right, perpendicular up, and perpendicular
down). This assumption holds true for small aircraft
and rotorcraft vehicles used in USAR missions.
Given the low speed of USAR aircraft the following
coefficients are suitable to be used in this domain:
a= 0:8, b = 2, c= 2. The coefficient values a, b, c,
and the initial values r0, ±0 depend on the motion
characteristics, average speed, and maximum speed
of the vehicles that the model approximates.

E. Parameters Summary and Training Strategies

All training was performed using the training
dataset only. For training involving the creation of
the feature map, the maximization criterion used
is shown in (10). The maximization criterion was
chosen with 2 main purposes: increase the vote count
of true wires produced by the Hough transform
(decreasing the possibility of miss detection and
increasing the accuracy of the tracking process), and
also, decrease incidental alignment in the windowed
Hough transform produced by components generated
by clutter (decreasing the FA rate). The connected
component analysis uses 8-connectivity

Maximization Criterion

=
No. True Edge Pixels

No. Connected Components
: (10)

The Canny edge detector uses 3 parameters:
sigma, and hysteresis thresholds parameters. The
edge detection parameters are learned optimizing
the maximization criteria with 1000 different
combinations. Sigma is chosen for every image
depending on the clutter measure of the entire image,
while the thresholds remain constant for all images.
The preprocessing filtering uses 3 parameters.

The size filtering threshold Ts is learned minimizing
the least squared error between output and ground
truth lines. The eccentricity threshold Te was chosen
in order to keep linear-shaped components. A
motion threshold Tm was chosen manually, and it is
used to ensure high-motion pixels are kept in the
preprocessing step. In this work Ts = 30, Te = 0:98,
and Tm = 0:9.

Fig. 9. Line candidate’s threshold function based on window’s
clutter measure.

The windowed Hough transform uses 2
parameters: the window size and the vote threshold
function. Large-sized windows are used in order
to search for regional trends [29] rather than local
trends. The window size to be processed was
chosen manually and it is 25% of the original image
(4£4 windowed Hough transform). By using the
training data subset with no obstacles, the maximum
vote count found in the parameter space for small
clutter ranges in the average is shown in Fig. 9.
Using a least squares algorithm the best first degree
polynomial which best approximates the data is
used as a baseline for the threshold of the parameter
space. Quadratic and cubic models were also tested,
but did not improve the algorithm performance.
The Hough transform threshold parameter in each
window is based on the clutter measure of the given
window. Line candidates are those elements in the
parameter space which vote count is greater than the
threshold shown in (11), which represents a shifted
approximating function. Equation (11) is shown in
Fig. 9 labeled as threshold function

Thresholdwin = X1 +X2clutter(win) (11)

where clutter(win) represents the clutter measure
of the window being processed. Using the training
dataset the threshold coefficients are as follows:
X1 = 122, X2 = 163.
The tracking process uses 3 parameters. There

are 3 line model coefficients that are learned using
the maximum motion tracked with the training data,
and they depend directly on the vehicle motion
characteristics and speed. A redundant line criterion
is defined as ½ within 40 px and μ within 40±. The
redundancy criterion was chosen by inspection to
represent the human perspective, i.e., two lines are
redundant when a human would consider them as
corresponding to the same ground truth.
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TABLE I
Dataset Details

Total With Obstacles No Obstacles Low Clutter High Clutter

Videos Frames Videos Frames Videos Frames Videos Frames Videos Frames

Entire 86 5576 55 3561 31 2015 44 2774 42 2802
Dataset (100%) (64%) (36%) (50%) (50%)

Training 44 2864 13 849 31 2015 22 1379 22 1477

Testing 42 2712 42 2712 – – 22 1395 20 1325

Fig. 10. Low cluttered sample frames with obstacles. (a) Clutter 9. (b) Clutter 19. (c) Clutter 24. (d) Clutter 28.

Fig. 11. Low cluttered sample frames with no obstacles. (a) Clutter 16. (b) Clutter 17. (c) Clutter 28. (d) Clutter 29.

IV. DATASETS

Search and rescue aircraft data is scarce and hard
to obtain due to the significant risk involved with
flying nearby obstacles within 15 m. The authors
collected videos using a Cannon Optura 20, by
manually panning the camera from left to right, right
to left, top to bottom, and bottom to top in different
locations in Florida and New Zealand, over a period
of 4 months under different weather (good weather,
mist, and moderate rain) and lighting conditions
(time of day). The data was collected without using
any stabilization hardware or software. Other videos
were taken using unknown hardware and with various
types of compression, and provided by the authors
from search and rescue groups. There is a total of
9.58 min of video from helicopters and unmanned
aerial vehicles (UAVs) that was used, including
footage from a UAV crashing into power lines in a
search and rescue mission at hurricane Katrina in
Pearlington, MS. The only hardware specs known
from aircraft are those from the footage taken at the
University of South Florida using a Sony FCB-EX
980S from a search and rescue helicopter Maxi Joker
2. The objects present in the images are buildings,
trees, power lines and wires. Each video is 30 fr/s
and 60—70 frames long. Image sizes are 320£ 240
and 720£ 480 px (Florida data) or 640£ 480 px

(Missouri/New Zealand). Ground truth lines were
manually drawn in the 3259 frames with obstacles.
A single straight line was used per each true obstacle.
The training dataset was randomly selected out of the
data collected manually.
For the entire dataset the clutter mean and

standard deviation per video is (¹,¾) = (30,12) with
a minimum of 5 units and a maximum of 57 units.
Low cluttered images are defined as those which have
a clutter measure less than 30 units. Figs. 10—11 are
sample frames of low cluttered images, Fig. 10(a)—(d)
having obstacles and Fig. 11(a)—(d) not having any.
Figs. 12—13 are sample frames of high cluttered
images, Fig. 12(a)—(d) having obstacles and
Fig. 13(a)—(d) not having any. Dataset details are
shown in Table I.

V. RESULTS

Results shown in Table II summarize the
performance of each algorithm used in this work.
Detection is computed by line; thus, each line missed
in a frame counts as a misdetection. A line is correctly
detected if it is found within an angle and a distance
tolerance threshold. The angle threshold is 40±, and
the distance threshold is 40 px. The experiments
performed in this work aim towards the validation
of the algorithm’s detection performance on stressed
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Fig. 12. High cluttered sample frames with wires. (a) Clutter 36. (b) Clutter 44. (c) Clutter 48. (d) Clutter 50.

Fig. 13. High cluttered sample frames with no wires. (a) Clutter 40. (b) Clutter 45. (c) Clutter 52. (d) Clutter 57.

Fig. 14. Detection and false alarm performance comparison using
different feature maps.

conditions, the importance of using video versus
still-frame processing, and the necessity of strong
preprocessing techniques.

A. Using Alternative Edge Detectors for the Feature
Map Creation

The Canny edge detector has been identified
[30] to consistently offer one of best edge detector
performances with respect of pixel-based ground
truth metrics with real (nonsynthetic) images.
Also, it has been found in [31] that for particular
conditions, few approaches offer any general
improvements over Canny. However, in order to
address the validity of Canny’s performance in the
urban low-altitude domain, specifically for thin
lines, a comparison between detection results using
feature maps created by Canny and small univalue
segment assimilating nucleus (SUSAN) [32] edge
detectors is presented. SUSAN has been identified
to have good performances compared with other edge
detectors, including Canny, with particular edge-based
recognition tasks such as in [33]. Fig. 14 shows that
the performance improvement for using preprocessing
(refer to Section IIIB), are similar regardless of the

TABLE II
Detection Results using Test Dataset
(refer to Section IV for dataset details)

Algorithm Detection False Alarm

Baseline (¤) 48% 75%
Parameter space double thresholds 81% 25%
Clutter-based single threshold 80% 25%

Hybrid 83% 25%
Hybrid (without tracking) 45% 25%

Note: ¤Baseline performance based on fixed threshold described
by algorithm’s authors.

edge detection technique used to compute the feature
map; furthermore, SUSAN and Canny edge detectors
offer a similar performance in terms of detection of
thin lines.

B. Detection Results

Table II shows a comparison between the baseline
(refer to Section IIB) and the different techniques
explored in this work. The detection and false alarm
percentages are computed dividing the number of
true and false positives by the number of ground truth
wires. The baseline performance is based on the fixed
threshold shown in (4). The second entry in Table II
shows the detection performance of the algorithm
using parameter space double-thresholds (12) and (13)
considered in previous work [34]. In (12) and (13) the
threshold becomes a function of the parameter space
alone

thresholddynamic = 0:75(max(votes)) (12)

thresholdstatic = 0:12(max line(window)): (13)

Equation (12) represents a dynamic threshold that
depends on the parameter space, and it is the 75%
of the maximum peak found in the window being
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Fig. 15. ROC of performance with test dataset using hybrid
thresholds.

processed. Equation (13) represents a static threshold
since it is based on the window size being used
(constant within a video), and it is 12% of the
maximum line possible in a window. The parameter
space double threshold performs best for low cluttered
images; thus, Table II shows the performance of the
hybrid threshold strategy that uses (12) and (13) for
low cluttered windows, and (11) for high cluttered
windows. Also, the last entry in Table II shows the
performance using hybrid thresholds, but without
using the tracking model. The tracking model allows
the algorithm to achieve high detection rates. Without
tracking the algorithm detection rate caps at 65% with
FA greater than 75%; however, at 62% detection the
FA is 72%, which represents a 15% detection and 3%
FA improvement over the baseline. Fig. 15 shows a
performance receiver operating characteristic (ROC)
of the hybrid technique. The hybrid technique offers
the best performance with the dataset used in this
work.

VI. CONCLUSIONS

This work describes a thin line detection algorithm
capable of providing high detection rate performance
with low-altitude video in urban environments. The
system was designed to support its use in USAR
missions, which often involve highly cluttered urban
scenes and uncontrolled weather conditions. Results
are computed using a large and challenging multi-site
low-video-quality dataset with 10160 thin obstacles
spanning across 5576 frames. The detection process
is performed on a feature map created by the use of
estimated motion at the pixel level combined with
an edge map computed by an edge detector. Similar
to previous studies, it was determined that Canny
and SUSAN edge detectors perform similarly. A
windowed Hough transform converts the feature map

in a multi-window parameter space in which tracking
takes place.
Detection performance is determined by comparing

the algorithm output with manual ground truth.
Related previous work was used as a baseline for
the performance comparison of the algorithm. For
the same detection rate, the FA improvement over
the baseline is 67%. Combined improvements over
the baseline, of 34% FA and 41% detection, are
shown. Also, improvements due to preprocessing and
video usage are computed. The preprocessing filters
account for an 8% detection and 18% FA performance
improvement. The use of tracking in video enables the
algorithm to achieve high detection rates, and opens
the possibility to detect over 65% of the thin objects,
that otherwise would not be possible.
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